帐号: 密码:
// 设为首页 // 收藏本站 // 请您留言 // 网址导航
远方教程-满足你的求知欲!
站内搜索:
HTML ASP PHP CSS DIV Dreamweaver Photoshop Word Excel PPT SEO技巧
您当前位置:网站首页 >> 统计之窗 >> MATLAB专区 >> 阅读文章

Matlab技巧04:EM算法分析与实现(基于高斯混合模型)

来源:远方教程 作者:远方教程 发布时间:2015-07-15 查看次数:15009 访问[新版]


4.另外一个Matlab实现EM算法的代码

X=zeros(600,2);
X(1:200,:) = normrnd(0,1,200,2);
X(201:400,:) = normrnd(0,2,200,2);
X(401:600,:) = normrnd(0,3,200,2);
[W,M,V,L] = EM_GM(X,3,[],[],1,[])   
下面是程序源码:
查看源代码
打印帮助
function[W,M,V,L] = EM_GM(X,k,ltol,maxiter,pflag,Init)
% [W,M,V,L] = EM_GM(X,k,ltol,maxiter,pflag,Init)
%
% EM algorithm for k multidimensional Gaussian mixture estimation
%
% Inputs:
%   X(n,d) - input data, n=number of observations, d=dimension of variable
%   k - maximum number of Gaussian components allowed
%   ltol - percentage of the log likelihood difference between 2 iterations ([] for none)
%   maxiter - maximum number of iteration allowed ([] for none)
%   pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none)
%   Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none)
%
% Ouputs:
%   W(1,k) - estimated weights of GM
%   M(d,k) - estimated mean vectors of GM
%   V(d,d,k) - estimated covariance matrices of GM
%   L - log likelihood of estimates
%
% Written by
%   Patrick P. C. Tsui,
%   PAMI research group
%   Department of Electrical and Computer Engineering
%   University of Waterloo,
%   March, 2006
%
 
%%%% Validate inputs %%%%
ifnargin <= 1,
 disp('EM_GM must have at least 2 inputs: X,k!/n')
 return
elseifnargin == 2,
 ltol = 0.1; maxiter = 1000; pflag = 0; Init = [];
 err_X = Verify_X(X);
 err_k = Verify_k(k);
 iferr_X | err_k,return;end
elseifnargin == 3,
 maxiter = 1000; pflag = 0; Init = [];
 err_X = Verify_X(X);
 err_k = Verify_k(k);
 [ltol,err_ltol] = Verify_ltol(ltol);
 iferr_X | err_k | err_ltol,return;end
elseifnargin == 4,
 pflag = 0;  Init = [];
 err_X = Verify_X(X);
 err_k = Verify_k(k);
 [ltol,err_ltol] = Verify_ltol(ltol);
 [maxiter,err_maxiter] = Verify_maxiter(maxiter);
 iferr_X | err_k | err_ltol | err_maxiter,return;end
elseifnargin == 5,
 Init = [];
 err_X = Verify_X(X);
 err_k = Verify_k(k);
 [ltol,err_ltol] = Verify_ltol(ltol);
 [maxiter,err_maxiter] = Verify_maxiter(maxiter);
 [pflag,err_pflag] = Verify_pflag(pflag);
 iferr_X | err_k | err_ltol | err_maxiter | err_pflag,return;end
elseifnargin == 6,
 err_X = Verify_X(X);
 err_k = Verify_k(k);
 [ltol,err_ltol] = Verify_ltol(ltol);
 [maxiter,err_maxiter] = Verify_maxiter(maxiter);
 [pflag,err_pflag] = Verify_pflag(pflag);
 [Init,err_Init]=Verify_Init(Init);
 iferr_X | err_k | err_ltol | err_maxiter | err_pflag | err_Init,return;end
else
 disp('EM_GM must have 2 to 6 inputs!');
 return
end
 
%%%% Initialize W, M, V,L %%%%
t = cputime;
ifisempty(Init),
 [W,M,V] = Init_EM(X,k); L = 0;
else
 W = Init.W;
 M = Init.M;
 V = Init.V;
end
Ln = Likelihood(X,k,W,M,V);% Initialize log likelihood
Lo = 2*Ln;
 
%%%% EM algorithm %%%%
niter = 0;
while(abs(100*(Ln-Lo)/Lo)>ltol) & (niter<=maxiter),
 E = Expectation(X,k,W,M,V);% E-step
 [W,M,V] = Maximization(X,k,E); % M-step
 Lo = Ln;
 Ln = Likelihood(X,k,W,M,V);
 niter = niter + 1;
end
L = Ln;
 
%%%% Plot 1D or 2D %%%%
ifpflag==1,
 [n,d] = size(X);
 ifd>2,
 disp('Can only plot 1 or 2 dimensional applications!/n');
 else
 Plot_GM(X,k,W,M,V);
 end
 elapsed_time = sprintf('CPU time used for EM_GM: %5.2fs',cputime-t);
 disp(elapsed_time);
 disp(sprintf('Number of iterations: %d',niter-1));
end
%%%%%%%%%%%%%%%%%%%%%%
%%%% End of EM_GM %%%%
%%%%%%%%%%%%%%%%%%%%%%
 
functionE = Expectation(X,k,W,M,V)
[n,d] = size(X);
a = (2*pi)^(0.5*d);
S = zeros(1,k);
iV = zeros(d,d,k);
forj=1:k,
 ifV(:,:,j)==zeros(d,d), V(:,:,j)=ones(d,d)*eps;end
 S(j) = sqrt(det(V(:,:,j)));
 iV(:,:,j) = inv(V(:,:,j));
end
E = zeros(n,k);
fori=1:n,
 forj=1:k,
 dXM = X(i,:)'-M(:,j);
 pl = exp(-0.5*dXM'*iV(:,:,j)*dXM)/(a*S(j));
 E(i,j) = W(j)*pl;
 end
 E(i,:) = E(i,:)/sum(E(i,:));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Expectation %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
function[W,M,V] = Maximization(X,k,E)
[n,d] = size(X);
W = zeros(1,k); M = zeros(d,k);
V = zeros(d,d,k);
fori=1:k, % Compute weights
 forj=1:n,
 W(i) = W(i) + E(j,i);
 M(:,i) = M(:,i) + E(j,i)*X(j,:)';
 end
 M(:,i) = M(:,i)/W(i);
end
fori=1:k,
 forj=1:n,
 dXM = X(j,:)'-M(:,i);
 V(:,:,i) = V(:,:,i) + E(j,i)*dXM*dXM';
 end
 V(:,:,i) = V(:,:,i)/W(i);
end
W = W/n;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Maximization %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
functionL = Likelihood(X,k,W,M,V)
% Compute L based on K. V. Mardia, "Multivariate Analysis", Academic Press, 1979, PP. 96-97
% to enchance computational speed
[n,d] = size(X);
U = mean(X)';
S = cov(X);
L = 0;
fori=1:k,
 iV = inv(V(:,:,i));
 L = L + W(i)*(-0.5*n*log(det(2*pi*V(:,:,i))) ...
 -0.5*(n-1)*(trace(iV*S)+(U-M(:,i))'*iV*(U-M(:,i))));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Likelihood %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
functionerr_X = Verify_X(X)
err_X = 1;
[n,d] = size(X);
ifn<d,
 disp('Input data must be n x d!/n');
 return
end
err_X = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_X %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
 
functionerr_k = Verify_k(k)
err_k = 1;
if~isnumeric(k) | ~isreal(k) | k<1,
 disp('k must be a real integer >= 1!/n');
 return
end
err_k = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_k %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
 
function[ltol,err_ltol] = Verify_ltol(ltol)
err_ltol = 1;
ifisempty(ltol),
 ltol = 0.1;
elseif~isreal(ltol) | ltol<=0,
 disp('ltol must be a positive real number!');
 return
end
err_ltol = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_ltol %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
function[maxiter,err_maxiter] = Verify_maxiter(maxiter)
err_maxiter = 1;
ifisempty(maxiter),
 maxiter = 1000;
elseif~isreal(maxiter) | maxiter<=0,
 disp('ltol must be a positive real number!');
 return
end
err_maxiter = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_maxiter %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
function[pflag,err_pflag] = Verify_pflag(pflag)
err_pflag = 1;
ifisempty(pflag),
 pflag = 0;
elseifpflag~=0 & pflag~=1,
 disp('Plot flag must be either 0 or 1!/n');
 return
end
err_pflag = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_pflag %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
function[Init,err_Init] = Verify_Init(Init)
err_Init = 1;
ifisempty(Init),
 % Do nothing;
elseifisstruct(Init),
 [Wd,Wk] = size(Init.W);
 [Md,Mk] = size(Init.M);
 [Vd1,Vd2,Vk] = size(Init.V);
 ifWk~=Mk | Wk~=Vk | Mk~=Vk,
 disp('k in Init.W(1,k), Init.M(d,k) and Init.V(d,d,k) must equal!/n')
 return
 end
 ifMd~=Vd1 | Md~=Vd2 | Vd1~=Vd2,
 disp('d in Init.W(1,k), Init.M(d,k) and Init.V(d,d,k) must equal!/n')
 return
 end
else
 disp('Init must be a structure: W(1,k), M(d,k), V(d,d,k) or []!');
 return
end
err_Init = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_Init %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
function[W,M,V] = Init_EM(X,k)
[n,d] = size(X);
[Ci,C] = kmeans(X,k,'Start','cluster', ...
 'Maxiter',100, ...
 'EmptyAction','drop', ...
 'Display','off');% Ci(nx1) - cluster indeices; C(k,d) - cluster centroid (i.e. mean)
whilesum(isnan(C))>0,
 [Ci,C] = kmeans(X,k,'Start','cluster', ...
 'Maxiter',100, ...
 'EmptyAction','drop', ...
 'Display','off');
end
M = C';
Vp = repmat(struct('count',0,'X',zeros(n,d)),1,k);
fori=1:n,% Separate cluster points
 Vp(Ci(i)).count = Vp(Ci(i)).count + 1;
 Vp(Ci(i)).X(Vp(Ci(i)).count,:) = X(i,:);
end
V = zeros(d,d,k);
fori=1:k,
 W(i) = Vp(i).count/n;
 V(:,:,i) = cov(Vp(i).X(1:Vp(i).count,:));
end
%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Init_EM %%%%
%%%%%%%%%%%%%%%%%%%%%%%%
 
functionPlot_GM(X,k,W,M,V)
[n,d] = size(X);
ifd>2,
 disp('Can only plot 1 or 2 dimensional applications!/n');
 return
end
S = zeros(d,k);
R1 = zeros(d,k);
R2 = zeros(d,k);
fori=1:k, % Determine plot range as 4 x standard deviations
 S(:,i) = sqrt(diag(V(:,:,i)));
 R1(:,i) = M(:,i)-4*S(:,i);
 R2(:,i) = M(:,i)+4*S(:,i);
end
Rmin = min(min(R1));
Rmax = max(max(R2));
R = [Rmin:0.001*(Rmax-Rmin):Rmax];
clf, hold on
ifd==1,
 Q = zeros(size(R));
 fori=1:k,
 P = W(i)*normpdf(R,M(:,i),sqrt(V(:,:,i)));
 Q = Q + P;
 plot(R,P,'r-'); grid on,
 end
 plot(R,Q,'k-');
 xlabel('X');
 ylabel('Probability density');
else% d==2
 plot(X(:,1),X(:,2),'r.');
 fori=1:k,
 Plot_Std_Ellipse(M(:,i),V(:,:,i));
 end
 xlabel('1^{st} dimension');
 ylabel('2^{nd} dimension');
 axis([Rmin Rmax Rmin Rmax])
end
title('Gaussian Mixture estimated by EM');
%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Plot_GM %%%%
%%%%%%%%%%%%%%%%%%%%%%%%
 
functionPlot_Std_Ellipse(M,V)
[Ev,D] = eig(V);
d = length(M);
ifV(:,:)==zeros(d,d),
 V(:,:) = ones(d,d)*eps;
end
iV = inv(V);
% Find the larger projection
P = [1,0;0,0]; % X-axis projection operator
P1 = P * 2*sqrt(D(1,1)) * Ev(:,1);
P2 = P * 2*sqrt(D(2,2)) * Ev(:,2);
ifabs(P1(1)) >= abs(P2(1)),
 Plen = P1(1);
else
 Plen = P2(1);
end
count = 1;
step = 0.001*Plen;
Contour1 = zeros(2001,2);
Contour2 = zeros(2001,2);
forx = -Plen:step:Plen,
 a = iV(2,2);
 b = x * (iV(1,2)+iV(2,1));
 c = (x^2) * iV(1,1) - 1;
 Root1 = (-b + sqrt(b^2 - 4*a*c))/(2*a);
 Root2 = (-b - sqrt(b^2 - 4*a*c))/(2*a);
 ifisreal(Root1),
 Contour1(count,:) = [x,Root1] + M';
 Contour2(count,:) = [x,Root2] + M';
 count = count + 1;
 end
end
Contour1 = Contour1(1:count-1,:);
Contour2 = [Contour1(1,:);Contour2(1:count-1,:);Contour1(count-1,:)];
plot(M(1),M(2),'k+');
plot(Contour1(:,1),Contour1(:,2),'k-');
plot(Contour2(:,1),Contour2(:,2),'k-');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Plot_Std_Ellipse %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 

打印 打印 | 关闭 关闭 评论
相关文章
图片新闻
站内搜索  
搜索
猜您喜欢  
最新更新  
阅读排行  
关于我们 | 联系方式 | 大事记 | 免责声明 | | 给我留言
部分广告源自金山联盟2345联盟 QQ咨询 站长之家QQ群:232617873
Copyright 2024 远方教程 © All Rights Reserved.

回顶部